Domanda di: Ing. Vitalba Moretti | Ultimo aggiornamento: 19 marzo 2023 Valutazione: 4.9/5
(4 voti)
Terzo principio di equivalenza delle disequazioni: Moltiplicando o dividendo entrambi i membri di una disequazione per uno stesso numero negativo e cambiando il verso del simbolo di disuguaglianza, si ottiene una disequazione equivalente a quella data.
Moltiplicando o dividendo entrambi i membri di un'equazione uno stesso numero diverso da zero si ottiene un'equazione equivalente a quella di partenza.
Cosa enuncia il principio di equivalenza delle disequazioni?
Primo principio di equivalenza: se a entrambi i membri di una disequazione si somma o si sottrae uno stesso numero o una stessa espressione algebrica, sempre definita del dominio della disequazione, si ottiene una disequazione equivalente alla disequazione data.
Che cosa afferma il primo principio di equivalenza?
Addizionando o sottraendo ai due membri di un'equazione uno stesso numero o una stessa espressione algebrica contenente l'incognita si ottiene un'equazione equivalente a quella di partenza.