Geometricamente la derivata prima è la pendenza della tangente a una curva; la derivata seconda misura quindi l'incremento della pendenza; se la pendenza diminuisce la curva pende sempre più verso il basso e quindi abbiamo concavità verso il basso (vedi figura a lato).
Le derivate ti aiutano a studiare le proprietà locali di una funzione. Il Calcolo Differenziale studia le variazioni del valore f(x) della funzione f, a fronte di variazioni infinitesime della variabile x. Qui sia f(x) che x saranno numeri reali, anche se sono possibili varie generalizzazioni.
Il calcolo della derivata di una funzione è usato in fisica per calcolare l'accelerazione istantanea di un corpo, in economia per studiare il prodotto marginale di una funzione di produzione, in statistica per calcolare il tasso di crescita demografico di una popolazione e così via.
Cosa succede se la derivata seconda è uguale a zero?
I punti in cui la curva passa attraverso la retta tangente sono i punti di flesso. Nei punti di flesso, la derivata seconda è nulla. Per trovarli si può porre la derivata seconda uguale a zero.
In particolar modo, la derivata prima permette di stabilire la crescenza o la decrescenza. La derivata seconda, invece, consente di riconoscere la concavità e la convessità delle curve, i tratti rettilinei, i punti di massimo e di minimo, i flessi.